Longitudinal Data Analysis Using SEM

Map Unavailable

Date/Time
Date(s) - 06/02/2016 - 06/03/2016
All Day

Categories No Categories


Start Date: 10/16/2015

End Date: 10/17/2015

Location:

Manhattan Beach Marriott

1400 Parkview Ave

Manhattan Beach, CA 90266

Website: http://statisticalhorizons.com/seminars/public-seminars/lda-sem-fall-2015

Contact: 610-642-1941

Taught by Paul D. Allison, Ph.D. 

For the past eight years, Professor Paul Allison has been teaching his acclaimed two-day seminars on Longitudinal Data Analysis Using SAS and Longitudinal Data Analysis Using Stata. In this new seminar he takes up where those courses leave off, with methods for analyzing panel data using software for structural equation modeling (SEM).

Panel data have two big attractions for making causal inferences with non-experimental data:

The ability to control for unobserved, time-invariant confounders.
The ability to determine the direction of causal relationships.
Fixed effects methods that control for unobserved confounders are now well known and widely used. Cross-lagged panel models have long been used to study the direction of causality. But trying to combine these two approaches poses serious problems.

To deal with these difficulties, econometricians have developed the Arellano-Bond methods for estimating dynamic panel data models. However, Arellano-Bond is known to be statistically inefficient and can also be severely biased in important situations.

Professor Allison has recently shown that dynamic panel models can easily be estimated by maximum likelihood with SEM software (ML-SEM). His recent work demonstrates that the performance of ML-SEM is superior to the econometric methods: In typical situations, the use of Arellano-Bond instead of ML-SEM is equivalent to throwing away half the data. Plus, ML-SEM offers better capabilities for handling missing data, evaluating model fit, relaxing constraints, and allowing for non-normal data.

This seminar takes a deep dive into the ML-SEM method for estimating dynamic panel models, exploring the ins and outs of assumptions, model specification, software programming, model evaluation and interpretation of results. We’ll work through several real data sets in great detail, testing out alternative methods and working toward an optimal solution.

This is an applied course with a minimal number of formulas and a maximal number of examples. Although the methodology is cutting edge, the emphasis is on how to actually do the analysis in order accomplish your objectives.

 

Leave a Reply